Day 16
Today
- Analysis of algorithms
All of the planned class activities will be done with the people at your table. The optimal number is probably four.
Reading Journal Debrief
At your table, discuss the following questions:
- What are some of the challenges in comparing the efficiency of two algorithms?
- How does order of growth analysis address these challenges?
- In what situations might order of growth analysis be misleading (or at least tell an incomplete story)?
- Review your answers to Appendix B Problem 1 (from the reading journal). If there is confusion about one of the answers, take some time to discuss it at your table in more detail (or use the whiteboard).
- If any questions come up that you’d like to raise with the whole class, there will be some time to do so following your small group discussions.
Practice with Order of Growth
Suppose we are given two python functions do_procedure_f1
and
do_procedure_f2
. Each function processes a list L
in some fashion
(what these programs do is unimportant for this exercise). We are told that
the order of growth of these procedures is:
-
do_procedure_f1
isO(n)
(where n is the length of the input listL
) -
do_procedure_f2
isO(1)
(where n is the length of the input listL
)
What are the order of growths of the following computations?
def run_computation_1(L):
do_procedure_f1(L)
do_procedure_f2(L)
def run_computation_2(L):
do_procedure_f1(L[0:5])
do_procedure_f2(L)
def run_computation_3(L):
for i in range(len(L)):
do_procedure_f1(L)
def run_computation_4(L):
for i in range(len(L)):
do_procedure_f2(L)
def run_computation_5(L):
if len(L) % 2 == 0:
do_procedure_f1(L)
else:
do_procedure_f2(L)
def run_computation_6(L):
if len(L) == 1:
return 1
else:
do_procedure_f2(L)
run_computation_6(L[0:len(L)/2])
Order of Growth for Basic Python Operations
You have read Think Python Appendix B.1 and B.2. One of the most important takeaways is the listing of the order of growth for various operations on Python data structures. Here are some key points:
- Removing an element from the end of a list is constant time
- Adding an element to the end of the list is constant time (on average)
- Testing if an element is in a list is linear time, O(n)
- Looking up the value stored with a given key in a dictionary is constant time
- Looking up an element stored in a list at a particular location is constant time
Empirical Analysis of Order of Growth
Next, we will be doing an exercise to:
- Practice the application of order of growth analysis to actual Python code
- Explore how this analysis squares with an empirical analysis of the running time of Python code. The exercises for this portion of class can be found in the repository https://github.com/sd16spring/ClassNotes under
AnalysisOfAlgorithms.ipynb
.